tra i conduttori inferiori della linea elettrica ed i fili telegrafici e telefonici una distanza superiore ai m. 2 prescritti, ed in ogni caso la minima distanza tra il punto più basso della conduttura elettrica ed il filo più alto della linea telegrafica o telefonica non è mai minore della distanza intercedente tra le fasi della conduttura.

Come si è visto, la distanza tra i conduttori è di m. 2,50 e l'altezza della coppia dei conduttori più bassi dal livello del suolo è di m. 8.

Ogni cinque km. circa la fune di guardia è stata messa a terra con piastre di rame e carbone.

La campata normale adottata è di m. 200, però in alcuni tratti, specie tra Rosone e Valperga, date le condizioni locali del terreno, la campata non è risultata uniforme e la tesata di 200 m. si può dire eccezionale e solo nei tratti di fondo valle.

In Comune di Lombardore per il sovrapassaggio del rivo della Valle è stata adottata una tesata di circa 300 m., onde evitare il collocamento di un palo con isolatori di ammarraggio.

Nelle campate di 200 m. la freccia massima del conduttore è di m. 9,61 alla temperatura di +40" come risulta dai calcoli seguenti:

Tesata 200 m. Altezza
$$H=23$$
 m.

Sovraccarichi $a=5^{\circ}$ Ghiaccio 1,2 kg m.

Peso proprio 0,765 .

Totale 1,965 kg/m.

Freccia $a-5^{\circ}$ Sollecitazione del rame K=12 kg. mmq. (Sezione s=86 mmq.) $f_{-3}=\frac{1}{8}\frac{Ql}{Ks}=\frac{1,965\times200^{\circ}}{8\times12\times86}=9,50 \text{ m}.$

Freccia $a + 40^{\circ}$ Carichi: solo peso proprio, $\Delta t = 45^{\circ}$

$$\begin{aligned} f^{2}_{40} = & f^{2}_{-4} + \frac{3}{8} \frac{l^{2}}{E} \left[\frac{1}{8} \frac{g l^{2}}{f_{40}} - \sigma \right] + \frac{3}{8} \Delta t \alpha l = \\ = & 90.25 + \frac{3}{8} \frac{40000}{11000} \left(\frac{1}{8} \frac{0.765 \times 40000}{f_{40} \cdot 86} - 12 \right) + \\ & + \frac{3}{8} 45 \frac{18}{10^{6}} 4 \times 10^{4} = \frac{60.75}{f_{40}} + 86 \quad f_{40} = 9.61 \text{ m.} \end{aligned}$$

I sostegni sono costituiti da pali in ferro a traliccio e di diversi tipi: tipo normale alto 23 m. fuori terra per rettifili con tesata media di m. 200 e altri tipi, in conformità di speciali esigenze locali, per tesate eccezionali e in vicinanza di strade, per pali di ammarramento e per pali d'angolo.

Negli attraversamenti di linee elettriche ed in particolare di quelle nel Comune di Venaria e nel Comune di Torino, le altezze dei pali sono state aumentate in relazione a quelle della linea esistente, in modo da assicurare sempre la minima distanza prescritta tra i conduttori delle due linee. In Comune di Pont Canavese, per l'attraversamento d'una teleferica, vennero adottati pali di 31,70 di altezza fuori terra.

I calcoli sono stati eseguiti in conformità delle prescrizioni, per pali normali, per pali di ormeggio e per pali d'angolo.

Si riportano i seguenti calcoli statici per il palo normale:

Carichi verticali: 6 fili
$$\Phi$$
105/10=6×200×0,765 = 920 kg m.

1 treccia Φ 9=200×0,4 = 80 »
6 isolatori a 6 elementi = 40×6 = 240 »
3 mensole = 240 »

Vento sui fili = coefficiente di riduzione della spinta : 0,6 fili di rame $200 \times 0,6 \times 0,0105 \times 120 \times 6 = 905 \text{ kg.}$ treccia $200 \times 0,6 \times 0,009 \times 120 = 130 \text{ s}$

Distanza del centro di pressione del vento sui fili, dal vertice del palo:

$$X = \frac{905 \times 3.5}{1035} = 3.06 \text{ m}.$$

Vento sul palo.

Tronco	Superficie contorno	Superhole colpita direttamente	Vani	Superficie totale	Distanza dal centro pressione dal giunto
10	$6.4 - \frac{0.65 + 1}{2} = 5.3 \text{ mq}.$	1,28	4,02 = 76 °/6	2,25 mq.	2,96 m.
2	$6.4 \frac{1+1.36}{2} = 7.5$	1,45	6.05 = 81 %	2,6	5,60 •
3 ⁿ	$5.7 \frac{1.36 + 1.70}{2} = 8.7$	1,46	7,25 = 83 6 / ₆	2,65	7.83 >
41	$3.6 \frac{1.7 + 1.9}{2} = 6.5$	1,00	5.5 = 85 ° ₀	1.85 •	9,20 •
	•	-		9,35 »	254 54